Cart (Loading....) | Create Account
Close category search window
 

Fast Interconnect and Gate Timing Analysis for Performance Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abbaspour, S. ; IBM Corp., Hopewell Junction, NY ; Pedram, M. ; Ajami, A. ; Kashyap, C.

Static timing analysis is a key step in the physical design optimization of VLSI designs. The lumped capacitance model for gate delay and the Elmore model for wire delay have been shown to be inadequate for wire-dominated designs. Using the effective capacitance model for the gate delay calculation and model-order reduction techniques for wire delay calculation is prohibitively expensive. In this paper, we present sufficiently accurate and highly efficient filtering algorithms for interconnect timing as well as gate timing analysis. The key idea is to partition the circuit into low and high complexity circuits, whereby low complexity circuits are handled with efficient algorithms such as total capacitance algorithm for gate delay and the Elmore metric for wire delay and high complexity circuits are handled with sign-off algorithms. Experimental results on microprocessor designs show accuracies that are quite comparable with sign-off delay calculators with more than of 65% reduction in the computation times

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 12 )

Date of Publication:

Dec. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.