Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Appearance Characterization of Linear Lambertian Objects, Generalized Photometric Stereo, and Illumination-Invariant Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhou, S.K. ; Dept. of Integrated Data Syst., Siemens Corporate Res., Princeton, NJ ; Aggarwal, G. ; Chellappa, R. ; Jacobs, D.W.

Traditional photometric stereo algorithms employ a Lambertian reflectance model with a varying albedo field and involve the appearance of only one object. In this paper, we generalize photometric stereo algorithms to handle all appearances of all objects in a class, in particular the human face class, by making use of the linear Lambertian property. A linear Lambertian object is one which is linearly spanned by a set of basis objects and has a Lambertian surface. The linear property leads to a rank constraint and, consequently, a factorization of an observation matrix that consists of exemplar images of different objects (e.g., faces of different subjects) under different, unknown illuminations. Integrability and symmetry constraints are used to fully recover the subspace bases using a novel linearized algorithm that takes the varying albedo field into account. The effectiveness of the linear Lambertian property is further investigated by using it for the problem of illumination-invariant face recognition using just one image. Attached shadows are incorporated in the model by a careful treatment of the inherent nonlinearity in Lambert's law. This enables us to extend our algorithm to perform face recognition in the presence of multiple illumination sources. Experimental results using standard data sets are presented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 2 )