By Topic

MultiStage: A MINMAX Bit Allocation Algorithm for Video Coders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Neva Cherniavsky ; Dept. of Comput. Sci. & Eng., Univ. of Washington, Seattle, WA ; Gidon Shavit ; Michael F. Ringenburg ; Richard E. Ladner
more authors

Most bit allocation algorithms for video are geared toward optimizing the average frame distortion. However, video sequences optimized this way may exhibit sudden changes in distortion, or "flicker," which can significantly affect the perceived quality of the sequence. An alternative approach is to minimize the maximum frame distortion, which aims to produce a constant-quality sequence, thus avoiding the flicker problem. In this work, we present a new algorithm for constant-quality video, called MultiStage. We first show how MultiStage works for an embedded bit plane coder, and we then demonstrate that it can be applied to traditional quantization-based coders, such as H.263 and H.264, in conjunction with a novel single-frame block-level rate-distortion optimization algorithm based on multiple-choice knapsack. We show that MultiStage achieves very good results, both in terms of maximum distortion and average distortion

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:17 ,  Issue: 1 )