By Topic

An Experimental Investigation of a Nonsupervised Adaptive Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ide, E.R. ; IBM Systems Development Division, Endicott, N. Y. ; Tunis, Cyril J.

An unsupervised or nonsupervised adaptive algorithm for linear decision boundaries is applied to two pattern recognition problems: the classification of spoken words, and the classification of hand-printed characters. The term unsupervised indicates that the class identification of the input patterns is not continuously available to the adaptive system. The algorithm discussed offers two advantages for pattern recognition applications. First, the number of patterns which must be labeled with class identification is reduced. Second, the adaptive system can follow changes in the class distributions over time, due to data fluctuation or hardware degradation. These advantages are demonstrated for each of the two applications.

Published in:

Electronic Computers, IEEE Transactions on  (Volume:EC-16 ,  Issue: 6 )