By Topic

1-D simulation of a novel nonvolatile resistive random access memory device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meyer, R. ; Inst. fur Festkorperforschung, Forschungszentrum Julich ; Kohlstedt, Hermann

The operation of a novel, nonvolatile memory device based on a conductive ferroelectric/semiconductor thin film multilayer stack is simulated numerically. The simulation involves the self-consistent steady-state solution of the transport equation for electrons assuming a drift-diffusion transport mechanism and the Poisson equation. Special emphasis is put on the screening of the spontaneous polarization by conduction electrons as a function of the applied voltage. Depending on the orientation of the polarization in the ferroelectric layer, a high and a low resistive state are found, giving rise to a hysteretic I-V characteristic. The switching ratio, ranging from >50% to several orders of magnitude, is calculated as a function of the dopant content. The suggested model provides one possible physical explanation of the I-V hysteresis observed for single-layer ferroelectric devices, if interfacial layers are taken into consideration. The approach will allow one to develop guidelines to improve the performance of these devices

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:53 ,  Issue: 12 )