By Topic

Decentralized Receiver in a MIMO system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sanderovich, A. ; Technion-Israel Inst. of Technol., Haifa ; Shamai, S. ; Steinberg, Y. ; Peleg, M.

In this paper we investigate the achievable rate of a system that includes a nomadic transmitter with several antennas, which is received by multiple agents, each with a single antenna, suffering independent channel coefficients and additive Gaussian noises. Since the transmitter is nomadic, the agents do not have any decoding ability. These agents process their channel observations and forward it to the final destination through lossless links with a fixed given capacity. Assuming Gaussian signalling, we get lower and upper bounds on the achievable rates, and demonstrate the achievability of the full multiplexing gain. We also extend the model to address multi-user systems. The asymptotic setting with numbers of agents and transmitter's antennas taken to infinity is examined, and the incompetence of the simple compression when compared to a Wyner-Ziv scheme is demonstrated. For finite setting, an upper-bound is derived, which turns out to be quite tight when compared to the Wyner-Ziv achievable rate, even for a rather small 4 times 4 system

Published in:

Information Theory, 2006 IEEE International Symposium on

Date of Conference:

9-14 July 2006