By Topic

Avoiding Pitfalls in Neural Network Research

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zhang, G.P. ; J. Mack Robinson Coll. of Bus., Georgia State Univ., Atlanta, GA

Artificial neural networks (ANNs) have gained extensive popularity in recent years. Research activities are considerable, and the literature is growing. Yet, there is a large amount of concern on the appropriate use of neural networks in published research. The purposes of this paper are to: 1) point out common pitfalls and misuses in the neural network research; 2) draw attention to relevant literature on important issues; and 3) suggest possible remedies and guidelines for practical applications. The main message we aim to deliver is that great care must be taken in using ANNs for research and data analysis

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:37 ,  Issue: 1 )