By Topic

Designing Workflow Components for e-Science

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frank Terpstra ; University of Amsterdam, the Netherlands ; Pieter Adriaans

In this paper we present a general domain for the analysis of workflows and workflow components based on the notion of a collection of Turing machines sharing a set of tapes. We show that computationally equivalent workflows can be evaluated in terms of two dimensions: data complexity and process complexity. We show that this approach allows for the evaluation of various workflow architectures. Using this formal framework we prove that maximal simplicity, generality and consistency are mutually exclusive. Simplicity of and generality of workflow components leads to complexity of data structures and computational processes. This is an issue that deserves more attention from designers and users of workflow communication protocols. We define a formal version of the General Workflow Design Problem and show that this problem is decidable in the case of a finite number of topologies. Thus, automatic composition of workflows is possible in limited domains. Decidability for an infinite number of topologies remains an open question. We show how our findings from the formal framework manifest themselves in real world e-Science workflow environments.

Published in:

2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06)

Date of Conference:

Dec. 2006