System Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Detecting Changes in Grey Level Sequences by ML Isotonic Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lanza, A. ; University of Bologna, Italy ; Di Stefano, L.

We present a robust and efficient change detection algorithm for grey-level sequences. A deep investigation of the effects of disturbance factors (illumination changes and automatic or manual adjustments of the camera transfer function, such as AGC, AE and gamma-correction) on image brightness allows to assume locally an order-preservation of pixel intensities. By a simple statistical modelling of camera noise, an ML isotonic regression procedure can thus be applied to perform change detection. Although the proposed approach may be used as a stand-alone pixel-level change detector, here we apply it to reduced-resolution images. In fact, we aim at using the algorithm as the coarse-level of a coarse-to-fine change detector we presented in [2].

Published in:

Video and Signal Based Surveillance, 2006. AVSS '06. IEEE International Conference on

Date of Conference:

Nov. 2006