By Topic

Norm-Optimal Iterative Learning Control Applied to Gantry Robots for Automation Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ratcliffe, J.D. ; Sch. of Electron. & Comput. Sci., Southampton Univ. ; Lewin, P.L. ; Rogers, E. ; Hatonen, J.J.
more authors

This paper is concerned with the practical implementation of the norm-optimal iterative learning control (NOILC) algorithm. Here, the complexity of this algorithm is first considered with respect to real-time control applications, and a new modified version, fast norm-optimal ILC (F-NOILC), is derived for this application, which potentially allows implementation with a sampling rate three times faster that the original algorithm. A performance index is used to assess the experimental results obtained from applying F-NOILC to an industrial gantry robot system and, in particular, the effects of varying the parameters in the cost function, which is at the heart of the norm-optimal approach

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 6 )