By Topic

A Formalism to Extract Fuzzy If-Then Rules from Numerical Data Using Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zheng Pei ; Sch. of Math. & Comput. Eng., Xihua Univ., Chengdu

In many applications knowledge required has to extract from a massive amount of numerical data. In this paper, extracting fuzzy if-then rules from numerical data is discussed. Due to The comprehensibility of fuzzy if-then rules is related to various factors. Our discussion is concentrated on simplicity of fuzzy rule-based systems, i.e., optimizing the number of input variables and the number of fuzzy if-then rules. Firstly, extracting fuzzy rule from numerical data is considered in decision information system, and confidence and support of fuzzy rule are obtained. Then, by encoding fuzzy partition and membership functions, selecting weighted mean of confidence and support of fuzzy rule as fitness function, optimizing the number of if-then rule and its inputs are formally discussed based on genetic algorithms (GAs)

Published in:

Evolving Fuzzy Systems, 2006 International Symposium on

Date of Conference:

Sept. 2006