By Topic

Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Emmanuel J. Candes ; Dept. of Appl. & Computational Math., California Inst. of Technol., Pasadena, CA ; Terence Tao

Suppose we are given a vector f in a class FsubeRopfN , e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to recover f to within precision epsi in the Euclidean (lscr2) metric? This paper shows that if the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program. More precisely, suppose that the nth largest entry of the vector |f| (or of its coefficients in a fixed basis) obeys |f|(n)lesRmiddotn-1p/, where R>0 and p>0. Suppose that we take measurements yk=langf# ,Xkrang,k=1,...,K, where the Xk are N-dimensional Gaussian vectors with independent standard normal entries. Then for each f obeying the decay estimate above for some 0<p<1 and with overwhelming probability, our reconstruction ft, defined as the solution to the constraints yk=langf# ,Xkrang with minimal lscr1 norm, obeys parf-f#parlscr2lesCp middotRmiddot(K/logN)-r, r=1/p-1/2. There is a sense in which this result is optimal; it is generally impossible to obtain a higher accuracy from any set of K measurements whatsoever. The methodology extends to various other random measurement ensembles; for example, we show that similar results hold if one observes a few randomly sampled Fourier coefficients of f. In fact, the results are quite general and require only two hypotheses on the measurement ensemble which are detailed

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 12 )