By Topic

Multiscale Hybrid Linear Models for Lossy Image Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Hong ; DSP Solutions Res. & Dev. Center, Texas Instruments, Dallas, TX ; John Wright ; Kun Huang ; Yi Ma

In this paper, we introduce a simple and efficient representation for natural images. We view an image (in either the spatial domain or the wavelet domain) as a collection of vectors in a high-dimensional space. We then fit a piece-wise linear model (i.e., a union of affine subspaces) to the vectors at each downsampling scale. We call this a multiscale hybrid linear model for the image. The model can be effectively estimated via a new algebraic method known as generalized principal component analysis (GPCA). The hybrid and hierarchical structure of this model allows us to effectively extract and exploit multimodal correlations among the imagery data at different scales. It conceptually and computationally remedies limitations of many existing image representation methods that are based on either a fixed linear transformation (e.g., DCT, wavelets), or an adaptive uni-modal linear transformation (e.g., PCA), or a multimodal model that uses only cluster means (e.g., VQ). We will justify both quantitatively and experimentally why and how such a simple multiscale hybrid model is able to reduce simultaneously the model complexity and computational cost. Despite a small overhead of the model, our careful and extensive experimental results show that this new model gives more compact representations for a wide variety of natural images under a wide range of signal-to-noise ratios than many existing methods, including wavelets. We also briefly address how the same (hybrid linear) modeling paradigm can be extended to be potentially useful for other applications, such as image segmentation

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 12 )