By Topic

A strong version of the redundancy-capacity theorem of universal coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Merhav, N. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Feder, M.

The capacity of the channel induced by a given class of sources is well known to be an attainable lower bound on the redundancy of universal codes with respect to this class, both in the minimax sense and in the Bayesian (maximin) sense. We show that this capacity is essentially a lower bound also in a stronger sense, that is, for “most” sources in the class. This result extends Rissanen's (1984, 1986) lower bound for parametric families. We demonstrate the applicability of this result in several examples, e.g., parametric families with growing dimensionality, piecewise-fixed sources, arbitrarily varying sources, and noisy samples of learnable functions. Finally, we discuss implications of our results to statistical inference

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 3 )