By Topic

Poly-phase codes and optimal filters for multiple user ranging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Griep, K.R. ; Nat. Semicond. Corp., Santa Clara, CA, USA ; Ritcey, J.A. ; Burlingame, J.J.

A technique is introduced to select poly-phase codes and optimal filters of a pulse compression system that have specific temporal and frequency characteristics. In the particular problem under study, multiple vehicles are assigned unique codes and receiver filters that have nearly orthogonal signatures. Narrowband users, that act as interference, are also present within the system. A code selection algorithm is used to select codes which have low autocorrelation sidelobes and low cross correlation peaks. Optimal mismatched filters are designed for these codes which minimize the peak values in the autocorrelation and the cross correlation functions. An adjustment to the filter design technique produces filters with nulls in their frequency response, in addition to having low correlation peaks. The method produces good codes and filters for a four-user system with length 34 four-phase codes. There is considerable improvement in cross and autocorrelation sidelobe levels over the matched filter case with only a slight decrease in the signal-to-noise ratio (SNR) of the system. The mismatched filter design also allows the design of frequency nulls at any frequency with arbitrary null attenuation, null width, and sidelobe level, at the cost of a slight decrease in processing gain.<>

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:31 ,  Issue: 2 )