By Topic

Modeling and maximizing burn-in effectiveness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien, W.-T.K. ; Dept. of Ind. Eng., Texas A&M Univ., College Station, TX, USA ; Way Kuo

System burn-in can get rid of many residual defects left from component and subsystem burn-in since incompatibility exists not only among components but also among different subsystems and at the system level. Even if system, subsystem, and component burn-in are performed, the system reliability often does not achieve the requirement. In this case, redundancy is a good way to increase system reliability when improving component reliability is expensive. This paper proposes a nonlinear model to: estimate the optimal burn-in times for all levels, and determine the optimal amount of redundancy for each subsystem. For illustration, a bridge system configuration is considered; however, the model can be easily applied to other system configurations. Since there are few studies on system, subsystem, and component incompatibility, reasonable values are assigned for the compatibility factors at each level

Published in:

Reliability, IEEE Transactions on  (Volume:44 ,  Issue: 1 )