Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Electrical overstress and electrostatic discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Diaz, C. ; IC Bus. Div., Hewlett-Packard Co., Palo Alto, CA, USA ; Kang, S.M. ; Duvvury, C.

Semiconductor devices have a limited ability to sustain electrical overstress (EOS). The device susceptibility to EOS increases as the device is scaled down to submicron feature size. At present, EOS is a major cause for IC failures. Published reports indicate that nearly 40% of IC failures can be attributed to EOS events. Hence, EOS threats must be considered early in the design process. For semiconductor devices, EOS embodies a broad range of electrical threats due to electromagnetic pulses, electrostatic discharge (ESD), system transients, and lightning. EOS-related failures in semiconductor devices can be classified according to their primary failure mechanisms into: thermally-induced failures, electromigration, electric-field-related failures. In general, thermally-induced failures are related to the doping level, junction depth, and device characteristic-dimensions whereas electric-field induced failures are primarily related to the breakdown of thin oxides in MOS devices

Published in:

Reliability, IEEE Transactions on  (Volume:44 ,  Issue: 1 )