By Topic

A neural network approach to broadcast scheduling in multi-hop radio networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gangsheng Wang ; Center for Commun. & Signal Process. Res., New Jersey Inst. of Technol., Newark, NJ, USA ; Ansari, N.

The problem of scheduling interference-free transmissions with maximum throughput in a multi-hop radio network is NP-complete. The computational complexity becomes intractable as the network size increases. In this paper, the scheduling is formulated as a combinatorial optimization problem. An efficient neural network approach, namely, mean field annealing, is applied to obtain optimal transmission schedules. Numerical examples show that this method is capable of finding an interference-free schedule with (almost) optimal throughput

Published in:

Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on  (Volume:7 )

Date of Conference:

27 Jun-2 Jul 1994