Cart (Loading....) | Create Account
Close category search window
 

Asymmetrical PWM technique with harmonic elimination and power factor control in AC choppers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Do-Hyun Jang ; Hoseo Univ., Chungnam, South Korea ; Gyu-Ha Choe ; Ehsami, M.

This paper describes the asymmetrical pulse width modulated (APWM) control technique for single phase AC choppers, which improves the input power factor and eliminates the harmonics of the output voltage up to a specified order. This technique also enables linear control of the fundamental component of the output voltage. The APWM switching patterns at the specified phase angle are obtained by the Newton-Raphson method and can be implemented by a one-chip microprocessor. Theoretical comparisons are made with conventional PWM technique and the computed performance indicates the superiority of the proposed APWM technique. Practical verification of the theoretical predictions is presented to conform the capabilities of the new technique

Published in:

Power Electronics, IEEE Transactions on  (Volume:10 ,  Issue: 2 )

Date of Publication:

Mar 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.