By Topic

A simple theorem prover based on symbolic trajectory evaluation and BDD's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Hazelhurst ; Dept. of Chem., British Columbia Univ., Vancouver, BC, Canada ; C. -J. H. Seger

Formal hardware verification based on symbolic trajectory evaluation shows considerable promise in verifying medium to large scale VLSI designs with a high degree of automation. However, in order to verify today's designs, a method for composing partial verification results is needed. This paper presents a theory of composition for symbolic trajectory evaluation and shows how implementing this theory using a specialized theorem prover is very attractive. Symbolic trajectory evaluation is used to prove low level properties of a circuit, and these properties are combined using the prover. Providing a powerful and flexible interface to a coherent system (with automatic assistance in parts) reduces the load on the human verifier. This hybrid approach, coupled with powerful and simple data representation, increases the range of circuits which can be verified using trajectory evaluation. The paper concludes with two examples. One example is the complete verification of a 64 b multiplier which takes approximately 15 minutes on a SPARC 10 machine

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:14 ,  Issue: 4 )