By Topic

Using difficulty of prediction to decrease computation: fast sort, priority queue and convex hull on entropy bounded inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shenfeng Chen ; Dept. of Comput. Sci., Duke Univ., Durham, NC, USA ; Reif, J.H.

Studies have indicated that sorting comprises about 20% of all computing on mainframes. Perhaps the largest use of sorting in computing (particularly business computing) is the sort required for large database operations (e.g. required by joint operations). In these applications the keys are many words long. Since our sorting algorithm hashes the key (rather than compare entire keys as in comparison sorts such as quicksort), our algorithm is even more advantageous in the case of large key lengths; in that case the cutoff is much lower. In case that the compression ratio is high, which can be determined after building the dictionary, we just adopt the previous sorting algorithm, e.g. quick sort. The same techniques can be extended to other problems (e.g. computational geometry problems) to decrease computation by learning the distribution of the inputs

Published in:

Foundations of Computer Science, 1993. Proceedings., 34th Annual Symposium on

Date of Conference:

3-5 Nov 1993