By Topic

Scale-sensitive dimensions, uniform convergence, and learnability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
N. Alon ; Dept. of Math., Tel Aviv Univ., Israel ; S. Ben-David ; N. Cesa-Bianchi ; D. Haussler

Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Gliveako-Cantelli classes. In this paper we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to characterize PAC learnability in the statistical regression framework of probabilistic concepts, solving an open problem posed by Kearns and Schapire. Our characterization shows that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class

Published in:

Foundations of Computer Science, 1993. Proceedings., 34th Annual Symposium on

Date of Conference:

3-5 Nov 1993