By Topic

Geometric discrepancy revisited

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chazelle, B. ; Dept. of Comput. Sci., Princeton Univ., NJ, USA

Discrepancy theory addresses the general issue of approximating one measure by another one. Originally an offshoot of diophantine approximation theory, the area has expanded into applied mathematics, and now, computer science. Besides providing the theoretical foundation for sampling, it holds some of the keys to understanding the computational power of randomization. A few applications of discrepancy theory are listed. We give elementary algorithms for estimating the discrepancy between various measures arising in practice. We also present a general technique for proving discrepancy lower bounds

Published in:

Foundations of Computer Science, 1993. Proceedings., 34th Annual Symposium on

Date of Conference:

3-5 Nov 1993