By Topic

Probability-driven motion planning for mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Timcenko ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; P. Allen

This paper proposes a path-planning method for mobile robots in the presence of uncertainty. We analyze environment and control uncertainty and propose methods for incorporating each of them into the planning algorithm. We model the environment using the pyramid structure that encodes the information on occupancy probabilities for each pixel as well as the partial information on conditional probabilities among different pixels. This structure allows for efficient and accurate computation of collision probabilities in the presence of environment uncertainty. The control uncertainty is mainly characterized by its expansion in space and time and is accordingly modeled by a stochastic differential equation that mathematically captures this phenomenon. Models that we develop are inevitably approximate but experiments confirm that they can be used as a reasonable model for motion planning. We have conducted a series of experiments on the mobile platform and some of these results are presented

Published in:

Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on

Date of Conference:

8-13 May 1994