Cart (Loading....) | Create Account
Close category search window
 

Resolved motion rate control of space manipulators with generalized Jacobian matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Umetani, Y. ; Dept. of Mech. Eng. Sci., Tokyo Inst. of Technol., Japan ; Yoshida, K.

The authors establish a control method for space manipulators taking dynamical interaction between the manipulator arm and the base satellite into account. The kinematics of free-flying multibody systems is investigated by introducing the momentum conservation law into the formulation and a novel Jacobian matrix in generalized form for space robotic arms is derived. The authors develop a control method for space manipulators based on the resolved motion control concept. The proposed method is widely applicable in solving not only free-flying manipulation problems but also attitude-control problems. The validity of the method is demonstrated by computer simulations with a realistic model of a robot satellite

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

Jun 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.