By Topic

An overview of high-temperature electronic device technologies and potential applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dreike, P.L. ; Sandia Nat. Labs., Albuquerque, NM, USA ; Fleetwood, D.M. ; King, D.B. ; Sprauer, D.C.
more authors

High-temperature electronics applications are found in combustion systems, well logging, and industrial processes, air stagnation points in supersonic aircraft, vehicle brakes, nuclear reactors, and dense electronic packages. We summarize physical effects and materials issues important for reliable operation of semiconductor device technologies at high temperatures (>125°C). We review the high-temperature potential of Si, GaAs, other III-V compounds, and SiC. For completeness, we also comment on nitrides, diamond, and vacuum microelectronics. We conclude that Si on insulator (SOI) technology can be developed readily for small signal operation up to about 300°C. There is some ongoing work in this area. GaAs offers little advantage over Si because of poor device isolation and the lack of reliable contacts above 250°C. Other III-V compounds could be developed for operation to ~600°C, using processes similar to those used for optoelectronics. There may be a market niche for III-V power devices above 200°C. There is considerable activity in semiconducting SiC, and device functionality has been demonstrated above 600°C. SiC is promising for operation above 300°C, and for power devices at frequencies from dc to ~10 GHz, but it faces numerous challenges to achieve manufacturable status. We attempt to match technologies with application areas

Published in:

Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on  (Volume:17 ,  Issue: 4 )