By Topic

Asymptotically optimal classification for multiple tests with empirically observed statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. Gutman ; Technion-Israel Inst. of Technol., Haifa, Israel

The decision problem of testing M hypotheses when the source is Kth-order Markov and there are M (or fewer) training sequences of length N and a single test sequence of length n is considered. K, M, n, N are all given. It is shown what the requirements are on M , n, N to achieve vanishing (exponential) error probabilities and how to determine or bound the exponent. A likelihood ratio test that is allowed to produce a no-match decision is shown to provide asymptotically optimal error probabilities and minimum no-match decisions. As an important serial case, the binary hypotheses problem without rejection is discussed. It is shown that, for this configuration, only one training sequence is needed to achieve an asymptotically optimal test

Published in:

IEEE Transactions on Information Theory  (Volume:35 ,  Issue: 2 )