By Topic

A generalized Euclidean algorithm for multisequence shift-register synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. -L. Feng ; Dept. of Comput. Sci. & Electr. Eng., Lehigh Univ., Bethlehem, PA, USA ; K. K. Tzeng

The problem of finding a linear-feedback shift register of shortest length capable of generating prescribed multiple sequences is considered. A generalized Euclidean algorithm, which is based on a generalized polynomial division algorithm, is presented. A necessary and sufficient condition for the uniqueness of the solution is given. When the solution is not unique, the set of all possible solutions is also derived. It is shown that the algorithm can be applied to the decoding of many cyclic codes for which multiple syndrome sequences are available. When it is applied to the case of a single sequence, the algorithm reduces to that introduced by Y. Sugiyama et al. (Inf. Control, vol.27, p.87-9, Feb. 1975) in the decoding of BCH codes

Published in:

IEEE Transactions on Information Theory  (Volume:35 ,  Issue: 3 )