Cart (Loading....) | Create Account
Close category search window

Acoustic-to-phonetic mapping using recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hanes, M.D. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Ahalt, S.C. ; Krishnamurthy, A.K.

This paper describes the application of artificial neural networks to acoustic-to-phonetic mapping. The experiments described are typical of problems in speech recognition in which the temporal nature of the input sequence is critical. The specific task considered is that of mapping formant contours to the corresponding CVC' syllable. We performed experiments on formant data extracted from the acoustic speech signal spoken at two different tempos (slow and normal) using networks based on the Elman simple recurrent network model. Our results show that the Elman networks used in these experiments were successful in performing the acoustic-to-phonetic mapping from formant contours. Consequently, we demonstrate that relatively simple networks, readily trained using standard backpropagation techniques, are capable of initial and final consonant discrimination and vowel identification for variable speech rates

Published in:

Neural Networks, IEEE Transactions on  (Volume:5 ,  Issue: 4 )

Date of Publication:

Jul 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.