By Topic

Development and testing of experimental materials and designs for high-current, high slip speed generator contacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Everett, J.E. ; Center for Electromech., Texas Univ., Austin, TX, USA ; Aanstoos, T.A. ; Laughlin, R.L.

The development of homopolar generators (HPGs) capable of producing high currents at high slip speeds requires current collectors that exhibit good electrical properties as well as good frictional properties at high temperatures. The authors have focused on developing and testing materials and designs that will respond to these requirements at a reduced wear rate. Methods for actively cooling the contact/slip surface interface were investigated and are discussed. Parameters of concern include wear, current density, slip speed, and voltage drop at the interface. Data compiled from experiments run on a 5-MJ HPG capable of a maximum slip speed of 160 m/s are presented. It is concluded that introduction of actively cooled contacts into a homopolar generator does present problems in both implementation and fluid management, but the potential result is a sliding contact capable of pulsed operation at high slip speeds and current densities than existing contact designs presently afford, or continuous operation at lower performance levels

Published in:

Components, Hybrids, and Manufacturing Technology, IEEE Transactions on  (Volume:11 ,  Issue: 1 )