By Topic

Restoration message transfer mechanism and restoration characteristics of double-search self-healing ATM network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fujii, H. ; Telecommun. Networks Labs., Nippon Telegraph and Telephone Corp., Tokyo, Japan ; Yoshikai, N.

The self-healing network is particularly interesting with regard to ATM networks, because the restoration time can be shortened by using the advantages of the ATM network. This paper studies a self-healing ATM network based on virtual path (VP) protection switching. First, a novel self-healing algorithm-the double-search self-healing algorithm-is proposed. It is shown that this algorithm can restore failed bidirectional VPs faster and find alternate VPs more effectively than existing self-healing algorithms. Second, it is shown that the restoration information for self-healing control (SHC) messages must be transferred by specific cells carrying the control and OAM information (Ic&o). Message parameters and a cell format are proposed. Third, evaluation of the restoration characteristics using the proposed self-healing algorithm by computer simulation indicates that good performance against a transmission link failure is obtained even in a large-scale network model with 110 nodes. The results also indicate that the VP group (VPG) method can improve the restoration time without reducing the restoration ratio

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:12 ,  Issue: 1 )