By Topic

Toward a high performance distributed memory climate model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
M. F. Wehner ; Lawrence Livermore Nat. Lab., CA, USA ; J. J. Ambrosiano ; J. C. Brown ; W. P. Dannevik
more authors

As part of a long range plan to develop a comprehensive climate systems modeling capability, the authors have taken the atmospheric general circulation model originally developed by Arakawa and collaborators at UCLA and have recast it in a portable, parallel form. The code uses an explicit time-advance procedure on a staggered three-dimensional Eulerian mesh. They have implemented a two-dimensional latitude/longitude domain decomposition message passing strategy. Both dynamic memory management and interprocess communication are handled with macro constructs that are preprocessed prior to compilation. The code can be moved about a variety of platforms, including massively parallel processors, workstation clusters, and vector processors, with a mere change of three parameters. Performance on the various platforms as well as issues associated with coupling different models for major components of the climate system are discussed

Published in:

High Performance Distributed Computing, 1993., Proceedings the 2nd International Symposium on

Date of Conference:

20-23 Jul 1993