By Topic

Application of frequency-domain neural networks to the active control of harmonic vibrations in nonlinear structural systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. J. Sutton ; Inst. of Sound & Vibration Res., Southampton Univ., UK ; S. J. Elliott

The authors show how a nonlinear adaptive controller of quasi-neural architecture can be used to control harmonic vibrations even when it has to act through a nonlinear actuator element. The controller comprises a fixed nonlinearity to generate harmonics of the sinusoidal reference signal and a linear adaptive combiner. The coefficients in the adaptive combiner are adjusted using a steepest descent algorithm in which harmonic generation in the nonlinear system under control is taken into account. A neural model for this frequency domain description of a nonlinear system is discussed, and it is shown that using information derived from this model in the steepest descent algorithm amounts to backpropagating the error signal through the plant model

Published in:

Neural Networks for Signal Processing [1992] II., Proceedings of the 1992 IEEE-SP Workshop

Date of Conference:

31 Aug-2 Sep 1992