By Topic

Severity measurements using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen, S. ; Dept. of Comput Sci., Illinois Inst. of Technol., Chicago, IL, USA ; Evens, M. ; Trace, D.A. ; Naeymi-Rad, F.

The authors introduce a novel patient severity measurement model using neural networks. A three layer, fully connected backpropagation neural network was used in the pilot experiment. The results are promising and demonstrate that the backpropagation neural network technique is capable of assessing the severity value by learning from raw data. The neural network is easy to improve and of relatively low cost. It saves the expert's valuable time used in assigning numerical values to variables

Published in:

Computer-Based Medical Systems, 1992. Proceedings., Fifth Annual IEEE Symposium on

Date of Conference:

14-17 Jun 1992