By Topic

An algebraic theory for modeling direct interconnection networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. D. Kaushik ; Dept. of Comput. & Inf. Sci., Ohio State Univ., Columbus, OH, USA ; S. Sharma ; C. -H. Huang ; J. R. Johnson
more authors

The authors present an algebraic theory based on tensor products for modeling direct interconnection networks. This theory has been used for designing and implementing block recursive numerical algorithms on shared-memory vector multiprocessors. This theory can be used for mapping algorithms expressed in tensor product form onto distributed-memory architectures. The authors focus on the modeling of direct interconnection networks. Rings, n-dimensional meshes, and hypercubes are represented in tensor product form. Algorithm mapping using tensor product formulation is demonstrated by mapping matrix transposition and matrix multiplication onto different networks

Published in:

Supercomputing '92., Proceedings

Date of Conference:

16-20 Nov 1992