By Topic

Thermal noise in digital Josephson devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feder, J.D. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Klein, M. ; Anderson, C.J.

A method of accurately estimating the I/sub 0/ (critical current) of a Josephson junction (JJ) with thermal noise was developed by measuring the effective thermal noise temperature of a JJ. The effective thermal noise temperature of various JJ devices was measured and calculated. The JJ devices evaluated included inductively and resistively coupled logic devices and JJ devices in the presence of various noise sources. The noise sources included room-temperature resistors, switched JJ devices, and JJ devices in the linear I-V region beyond the gap. The R/sub NN/ compensator is shown to result in a noise temperature of about 6 K at an interferometer. The addition of a shunt junction lessens the noise penalty introduced by the compensator. A switched isolation interferometer in a two-input AND gate contributes negligible noise at the injection device. It is also shown that bandwidth connections to room-temperature equipment result in very large excess noise and require special input and output circuits on the chip.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:3 ,  Issue: 1 )