By Topic

Using atomic data structures for parallel simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Barth, P.S. ; Lab. for Comput. Sci., MIT, Cambridge, MA, USA

Synchronizing access to shared data structures is a difficult problem for simulation programs. Frequently, synchronizing operations within and between simulation steps substantially curtails parallelism. The paper presents a general technique for performing this synchronization while sustaining parallelism. The technique combines fine-grained, exclusive locks with futures, a write-once data structure supporting producer-consumer parallelism. The combination allows multiple operations within a simulation step to run in parallel; further, successive simulation steps can overlap without compromising serializability or requiring roll-backs. The cumulative effect of these two sources of parallelism is dramatic: the example presented shows almost 20-fold increase in parallelism over traditional synchronization mechanisms

Published in:

Scalable High Performance Computing Conference, 1992. SHPCC-92, Proceedings.

Date of Conference:

26-29 Apr 1992