By Topic

Implementation of a unified robot kinematics and inverse dynamics algorithm on a DSP chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Drake, B.W. ; Dept. of Electr. & Comput. Eng., California Univ., Davis, CA, USA ; Hsia, T.C.S.

The feasibility and performance of implementing kinematics and inverse dynamics algorithms on a DSP chip for real-time robot arm control is investigated. The algorithms include the following modules: forward and inverse kinematics; Jacobian, inverse Jacobian, and Jacobian derivative term; and Newton-Euler inverse dynamics. These modules are unified under a common coordinate system, and then computationally optimized by eliminating the redundancies among the modules. Further optimization is indicated for the PUMA-like arms. The algorithms are implemented on a TI TMS320C30 DSP chip. It is found that the execution time for the entire set of algorithms is about 0.78 ms for a six-degree-of-freedom robot with a spherical wrist, and is about 0.63 ms for a PUMA-specific arm. The communication time between the host PC and the DSP chip is about 0.376 ms. Thus, it is possible to implement a complete Cartesian controller at a 1000 Hz sampling rate. The algorithms have been successfully tested on a PUMA arm with a PC-based advanced controller

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:40 ,  Issue: 2 )