By Topic

Hidden Markov fields and unsupervised segmentation of images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Allagnat, O. ; Ecole Nat. Superieure des Telecommun. de Bretagne, France ; Boucher, J.-M. ; Dong-Chen He ; Pieczynski, W.

Deals with unsupervised Bayesian segmentation of images. The authors introduce a new algorithm based on a recent general method of estimation in the case of incomplete data (iterative conditional estimation). The efficiency of the method is compared with a recent algorithm based on the stochastic gradient by L. Younes (1989). Results of numerous simulations are given and an application to a real radar image is also derived

Published in:

Pattern Recognition, 1992. Vol.III. Conference C: Image, Speech and Signal Analysis, Proceedings., 11th IAPR International Conference on

Date of Conference:

30 Aug-3 Sep 1992