By Topic

Hot-carrier-induced degradation of gate dielectrics grown in nitrous oxide under accelerated aging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ditali, A. ; Micron Semicond. Inc., Boise, ID, USA ; Mathews, V. ; Fazan, P.

Gate oxides grown with partial and complete oxidation in N/sub 2/O were studied in terms of hot-carrier stressing. The DC lifetime for 10% degradation in g/sub m/ had a 15*improvement over control oxides not grown in a N/sub 2/O atmosphere. Further improvement in g/sub m/ degradation was observed in oxides that received partial oxidation as compared with control oxides. This improvement is due to the incorporation of nitrogen that reduces strained Si-O bonds at the Si/SiO/sub 2/ interface, leading to lower interface state generation (ISG). Improvements were also observed in I/sub g/-V/sub g/ characteristics, indicating a reduction of trap sites both at the Si/SiO/sub 2/ interface and in the bulk oxide. Improved gate-induced drain leakage (GIDL) characteristics as a function of hot-carrier stressing for partial N/sub 2/O oxides were observed over control oxides. However, severe drain leakage that masked GIDL was observed on pure N/sub 2/O oxides and is a subject for further study.<>

Published in:

Electron Device Letters, IEEE  (Volume:13 ,  Issue: 10 )