By Topic

Batch fabrication and structure of integrated GaAs-Al/sub x/Ga/sub 1-x/As field-effect transistor-self-electro-optic effect devices (FET-SEED's)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
D'Asaro, L.A. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Chirovsky, L.M.F. ; Laskowski, E.J. ; Pei, S.-S.
more authors

The authors have demonstrated a smart pixel prototype field-effect-transistor-self-electrooptic-effect-device (FET-SEED) integrated optoelectronic amplifier utilizing process technology suitable for flexible design and fabrication of high-yield optoelectronic circuits. A single MBE growth sequence provides for quantum-well modulators, photodiodes, doped channel MIS-like field-effect transistors (DMTs), and resistors. The device dimensions are controlled in a planar technology using ion implantation and selective plasma etching for isolation and contacting. Results demonstrate optical amplification in a fully integrated circuit. This technology will enable increased functionality by providing digital electronic processing between optical input and output.<>

Published in:

Electron Device Letters, IEEE  (Volume:13 ,  Issue: 10 )