By Topic

A parallel textured algorithm for optimal routing in data network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang, G.M. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Hsieh, W.-L.

A textured decomposition-based algorithm is developed to solve the optimal routing problem in data networks. The idea of the algorithm is to decompose the large-scale network into several smaller-scale subnetworks; then these subnetworks are organized systematically into several levels. Each level contains mutually independent subnetworks. When the external flows to a level are frozen, one can concurrently compute the optimal solution of the subnetworks at the level. The proposed parallel-oriented algorithm will converge to the global optimal solution when some conditions are satisfied. The authors use a few examples to illustrate the convergence conditions of the textured algorithm. A numerical example to demonstrate the potential speedup of the algorithm is also provided

Published in:

Global Telecommunications Conference, 1991. GLOBECOM '91. 'Countdown to the New Millennium. Featuring a Mini-Theme on: Personal Communications Services

Date of Conference:

2-5 Dec 1991