Cart (Loading....) | Create Account
Close category search window
 

Exact and Heuristic Approaches to Input Vector Control for Leakage Power Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feng Gao ; Adv. Micro Devices Inc., Boxborough, MA ; Hayes, J.P.

Leakage power consumption is an increasingly serious problem in very large-scale integration circuits, especially for portable applications. Two novel approaches to leakage power minimization in static complementary metal-oxide-semiconductor circuits that employ input vector control (IVC) are investigated. The authors model leakage effects by means of pseudo-Boolean functions. These functions are linearized and incorporated into an exact (optimal) integer linear programming (ILP) model, called virtual-gate ILP, which analyzes leakage variation with respect to a circuit's input vectors. A heuristic mixed-integer linear programming (MLP) method is also proposed, which has several advantages: it is faster, its accuracy can be quickly estimated, and tradeoffs between runtime and optimality can easily be made. Furthermore, the MLP model also provides a way to estimate a lower bound on circuit leakage current. The proposed methods are used to generate an extensive set of experimental results on leakage reduction. It is shown that average leakage currents are usually 1.25 times the minimum, confirming the effectiveness of IVC. The heuristic MLP approach is shown to be approximately 13.6 times faster than the exact ILP method, whereas finding input vectors whose power consumption is only a few percent above the optimum. In addition, the lower bound estimated by the MLP model is also within a few percent of the optimal value

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.