Cart (Loading....) | Create Account
Close category search window
 

Construction and Experimental Implementation of a Model-Based Inverse Filter to Attenuate Hysteresis in Ferroelectric Transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hatch, A.G. ; Dept. of Math., North Carolina State Univ., Raleigh, NC ; Smith, R.C. ; De, Tathagata ; Salapaka, M.V.

Hysteresis and constitutive nonlinearities are inherent properties of ferroelectric transducer materials due to the noncentrosymmetric nature of the compounds. In certain regimes, these effects can be mitigated through restricted input fields, charge- or current-controlled amplifiers, or feedback designs. For general operating conditions, however, these properties must be accommodated in models, transducer designs, and model-based control algorithms to achieve the novel capabilities provided by the compounds. In this paper, we illustrate the construction of inverse filters, based on homogenized energy models, which can be used to approximately linearize the piezoceramic transducer behavior for linear design and control implementation. Attributes of the inverse filters are illustrated through numerical examples and experimental open loop control implementation for an atomic force microscope stage

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:14 ,  Issue: 6 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.