Cart (Loading....) | Create Account
Close category search window
 

Segmentation of VOI From Multidimensional Dynamic PET Images by Integrating Spatial and Temporal Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jinman Kim ; Biomed. & Multimedia Inf. Technol. Group, Sydney Univ., NSW ; Weidong Cai ; Dagan Feng ; Eberl, S.

Segmentation of multidimensional dynamic positron emission tomography (PET) images into volumes of interest (VOIs) exhibiting similar temporal behavior and spatial features is a challenging task due to inherently poor signal-to-noise ratio and spatial resolution. In this study, we propose VOI segmentation of dynamic PET images by utilizing both the three-dimensional (3-D) spatial and temporal domain information in a hybrid technique that integrates two independent segmentation techniques of cluster analysis and region growing. The proposed technique starts with a cluster analysis that partitions the image based on temporal similarities. The resulting temporal partitions, together with the 3-D spatial information are utilized in the region growing segmentation. The technique was evaluated with dynamic 2-[18F] fluoro-2-deoxy-D-glucose PET simulations and clinical studies of the human brain and compared with the k-means and fuzzy c-means cluster analysis segmentation methods. The quantitative evaluation with simulated images demonstrated that the proposed technique can segment the dynamic PET images into VOIs of different kinetic structures and outperforms the cluster analysis approaches with notable improvements in the smoothness of the segmented VOIs with fewer disconnected or spurious segmentation clusters. In clinical studies, the hybrid technique was only superior to the other techniques in segmenting the white matter. In the gray matter segmentation, the other technique tended to perform slightly better than the hybrid technique, but the differences did not reach significance. The hybrid technique generally formed smoother VOIs with better separation of the background. Overall, the proposed technique demonstrated potential usefulness in the diagnosis and evaluation of dynamic PET neurological imaging studies

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 4 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.