By Topic

Finding symmetric orthogonal Gough-Stewart platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. E. McInroy ; Dept. of Electr. & Comput. Eng., Wyoming Univ., Laramie, WY, USA ; F. Jafari

This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms

Published in:

IEEE Transactions on Robotics  (Volume:22 ,  Issue: 5 )