By Topic

On the Performance of Flooding-Based Resource Discovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dimakopoulos, V.V. ; Dept. of Comput. Sci., Ioannina Univ. ; Pitoura, E.

We consider flooding-based resource discovery in distributed systems. With flooding, a node searching for a resource contacts its neighbors in the network, which in turn contact their own neighbors and so on until a node possessing the requested resource is located. Flooding assumes no knowledge about the network topology or the resource distribution thus offering an attractive means for resource discovery in dynamically evolving networks such as peer-to-peer systems. We provide analytical results for the performance of a number of flooding-based approaches that differ in the set of neighbors contacted at each step. The performance metrics we are interested in are the probability of locating a resource and the average number of steps and messages for doing so. We study both uniformly random resource requests and requests in the presence of popular (hot) resources. Our analysis is also extended to take into account the fact that nodes may become unavailable either due to failures or voluntary departures from the system. Our analytical results are validated through simulation

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 11 )