Cart (Loading....) | Create Account
Close category search window
 

Optimizing Communications of Dynamic Data Redistribution on Symmetrical Matrices in Parallelizing Compilers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ching-Hsien Hsu ; Dept. of Comput. Sci. & Inf. Eng., Chung Hua Univ., Hsinchn ; Ming-Hao Chen ; Chao-Tung Yang ; Kuan-Ching Li

Dynamic data redistribution is used to enhance data locality and algorithm performance by reducing interprocessor communication in many parallel scientific applications on distributed memory multicomputers. Since the redistribution is performed at runtime, there is a performance tradeoff between the efficiency of the new data decomposition for a subsequent phase of an algorithm and the cost of redistributing data among processors. In this paper, we present a processor replacement scheme to minimize the cost of interprocessor data exchange during runtime. The main idea of the proposed technique is to develop a replacement function for reordering logical processors in the destination phase. Based on the replacement function, a realigned sequence of destination processors can be derived and is then used to perform data decomposition in the receiving phase. Together with local matrix and compressed CRS vectors transposition schemes, the interprocessor communication can be eliminated during runtime. A significant improvement of this approach is that the realignment of data can be performed without interprocessor communication for special cases. The second contribution of the present technique is that the complicated communication sets generation could be simplified by applying local matrix transposition. Consequently, the indexing cost could be reduced significantly. The proposed techniques can be applied in both dense and sparse applications. A generalized symmetric redistribution algorithm is also presented in this work. To analyze the efficiency of the proposed technique, the theoretical analysis proves that up to (p-1)/p data transmission cost can be saved. For general cases, the symmetric redistribution algorithm saves 1/p communication overheads compared with the traditional method. Experimental results also show that the proposed techniques provide superior performance in most data redistribution instances

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.