By Topic

Evolutionary Multiprocessor Task Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The genetic algorithm has, to date, been applied to a wide range of problems. It is an ideal tool to solve problem in need of multiple, often interdependent requirements. This is because it has the ability to search within a large solution space while at the same time meeting criteria and constraints within the problem's boundaries. In this paper, we apply this heuristic to the problem of multiprocessor task scheduling - assigning a group of predefined tasks to a set of predefined processors. This task execution should take a minimum amount of time while taking into account certain constraints - e.g., prerequisite constraints between the tasks. Aside from using the genetic algorithm, we incorporate a local search method called a memetic within the genetic algorithm as a global search. Since the tasks are operating in a multiprocessor environment, we also attempt to reduce processor temperature by reducing the total power consumption and load balancing amongst the processors

Published in:

International Symposium on Parallel Computing in Electrical Engineering (PARELEC'06)

Date of Conference:

13-17 Sept. 2006