By Topic

Scalable Time-Parallelization of Molecular Dynamics Simulations in Nano Mechanics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanan Yu ; Florida State University, USA ; Ashok Srinivasan ; Namas Chandra

Molecular dynamics (MD) is an important atomistic simulation technique, with widespread use in computational chemistry, biology, and materials. An important limitation of MD is that the time step size is small, requiring a large number of iterations to simulate realistic time spans. Conventional parallelization is not very effective for this. We recently introduced a new approach to parallelization, where data from related prior simulations are used to parallelize a new computation along the time domain. In our prior work, the size of the physical system in the current simulation needed to be identical to that of the prior simulations. The significance of this paper lies in demonstrating a strategy that enables this approach to be used even when the physical systems differ in size. Furthermore, this method scaled up to almost 1000 processors with close to ideal speedup in one case, where conventional methods scale to only 2-3 processors

Published in:

2006 International Conference on Parallel Processing (ICPP'06)

Date of Conference:

14-18 Aug. 2006